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We compute hierarchical renormalization-group fixed points as solutions to an
algebraic equation for the coupling constants. This method does not rely on an
iteration of renormalization-group transformations and therefore avoids the
problem of fine tuning. We solve truncated versions of the fixed-point equation
numerically for different values of the dimension parameter in the range
2 <d <4 and different orders of truncations. The method is well suited even for
multicritical fixed points with any number of unstable directions. Precise
numerical data are presented for the first three nontrivial fixed points and their
critical indices. We also develop an e-expansion for the hierarchical models
using computer algebra. The numerical results are compared with the
g-expansion.

KEY WORDS: Renormalization group; renormalization-group fixed points;
hierarchical model; epsilon-expansion; critical exponents.

1. INTRODUCTION

The renormalization group (RG)!" is a nonperturbative approach to
critical phenomena in statistical mechanics and Euclidean field theory. It
offers a satisfactory explanation for the behavior of statistical models in the
critical regime, in particular the appearance of universal quantities. It also
suggests block spin transformations as an actual scheme for computations
of critical quantities. Last but not least, it has proved to be a powerful tool
in rigorous investigations. Although a lot of effort has been put into the
subject since the seminal work of Wilson, it is far from being closed.

The main idea is to think of a critical system in terms of the flow of
effective actions generated by a block spin transformation. This flow will
have fixed points. An instructive example is a system with two possible
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phases separated by a second-order transition in the absence of an external
field. Then we typically find two stable fixed points characterizing the
different phases and one unstable fixed point signaling a phase transition.
Critical indices can be calculated as eigenvalues of a linearized transforma-
tion at the unstable fixed point. Given any critical system, the most
important task is thus the determination of its RG flow fixed points and
the flow in their vicinity.

Let us consider a Euclidean scalar field on a d-dimensional unit lattice
A. The action is S(¢) = So(d) + V(9), with V(—¢)= V(¢). The interaction
is called local if the Boltzmann factor exp(— V(¢#)) factorizes into a product
IT«e 4 F(¢(x)). Unfortunately, locality is only preserved in an approximate
sense by block spin transformations. A main technical difficulty therefore is
to find an efficient parametrization of the effective actions generated by the
flow. Also it is not a priori clear what the best choice for the block spin is.
A guideline is to demand the effective actions to be approximately as local
as possible.

The block spin transformation which we will consider here relies on a
decomposition of the Gaussian measure du,(¢) [determined by the free
action Sy(¢)] into a background and a fluctuation part. The free
covariance (propagator) is v={(—4)"'. The block spin transformation
then consists of an integration step, a rescaling step of the background field
and the block laitice, and a subsequent subtraction of the fieid-independent
term. In this setup the nonlocality of the effective interaction is traced back
to the fact that the fluctuation covariance, despite its exponential decay,
couples fields further apart than a block distance.

In the hierarchical model‘® the free covariance (—4) " is replaced by
a hierarchical counterpart (—4), .. Both covariances share a similar long-
distance decay, although the hierarchical covariance is not translation
invariant, and the models therefore behave similarly in the critical region.
As a gain, the hierarchical block spin transformation preserves locality in
a strict sense. A hierarchical RG step turns out to be a nonlinear transfor-
mation of the local Boltzmann factor F(¢), which is a function of a single
variable rather than a functional of a field configuration.

One point of view is to think of a hierarchical model as an approxima-
tion to its full brother. This is obviously only justified if there exists an
interpolation between the two which admits the computation of systematic
corrections around the hierarchical situation. Such a scheme is still lacking,
although a number of first steps into this direction can be found in the
literature (see, e.g., ref. 3). The main difference between the hierarchical and
the full model is the absence of wave function renormalization in the
former. Wave function renormalization comes about in the full model
because the effective interaction contains a kinetic term as a part of the
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quadratic piece. This is clearly discarded once the effective action is forced
to be ultralocal.

A second point of view is to think of hierarchical models as nontrivial
statistical models by themselves which are perfectly suited for the RG
approach. Due to their nontrivial interaction they are far from being
exactly solvable. Their phase structure and critical behavior are as rich and
complicated as in the full case. This point of view seems somewhat
academic since we do not know of any real ensembles which belong to the
universality class of a hierarchical model. Real systems do not show this
peculiar breaking of translation invariance.

The third point of view is to consider hierarchical models as a test
ground for both concepts and methods toward the RG treatment of the full
model. The problem of nonlocalities in the effective action is believed to be
of purely technical nature. This is convincingly supported by rigorous
studies of many full critical models (e.g., refs. 4) which have been preceded
by studies of their hierarchical counterparts. A full RG flow will always
contain as a part a flow of local quantities which is accurately modeled by
a hierarchical flow.

An exciting possibility within the hierarchical context is to tune the
dimension parameter d away from integer values. The hierarchical transfor-
mation does not involve any lattice geometry and contains 4 and a scale
parameter L as variables which can be taken real-valued. Let us stress that
this can be done completely independent of perturbation theory. A beautiful
picture emerges that shows a sequence of thresholds between two and four
dimensions where new fixed points appear. For instance, four dimensions
is the threshold below which an unstable double-well fixed point exists
which governs three-dimensional physics. This picture is believed to be true
also in the full model, although we do not know of an RG formulation
which incorporates lattice geometry only in the form of a dimension
parameter which can be tuned at will.

In this paper we investigate the question of RG flows in the hierarchical
model. Usually small coupling constants are required to do analytically
such an investigation. To study infrared fixed points we have no small
coupling parameters at hand. Nevertheless, we will show that we can do
RG calculations for models which are not asymptotically free, by using
some algebraic equations.

After splitting off the quadratic fixed point, which corresponds to the
unordered phase, we expand the Boltzmann factor in terms of local
operators. We will use two kinds of operators, simple powers of fields and
normal ordered products. Then the fixed-point equation becomes a set of
algebraic equations for the coupling constants. We truncate this system and
solve it numerically.
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For the fact that truncation of the infinite system leads to correct
results and how errors are estimated we refer to the work of Koch and
Wittwer.'>) See also the more recent work in ref. 6. In ref. 5 it was shown
by an exact S-function technique using certain norms that the infrared fixed
point exists in three dimensions. In ref. 6, tools and methods are developed
to control and estimate truncation errors.

The direct computation turns out to be much better than searching for
fixed points by iterating block spin transformations and fine tuning the
initial values. It allows us to determine even the higher fixed points with
multidimensional unstable manifolds to high accuracy. Then we linearize
this set of equations and diagonalize it numerically around the various
fixed points. This directly computes the critical indices of the hierarchical
model without having to rely on any kind of expansions.

The algebraic equations can also be written down for the full model in
terms of a polymer expansion. It is less clear then how to truncate this
system to a reasonable size. But we believe that this is manageable and will
admit a similar numerical treatment.

The algebraic equations can be solved for any value of d > 2. Inserting
a power series ansatz in ¢ for the coupling constants at d =4 — ¢, we obtain
the e-expansion for the double-well fixed point and analogously at the
other critical dimensions. The resulting set of equations can be put into a
recursive form which we iterate exactly using computer algebra. We
compare this g-expansion with the numerical results of the previous
computations both for the fixed points and the critical indices.

Finally, we investigate the flow around the fixed points in terms of the
eigenoperators of the linearized flow. It turns out that the eigenoperators
at the double-well fixed point are approximately normal ordered powers in
a small-field region but show exponential decay at large fields.

Hierarchical models have been investigated by many authors. Qur
approach is close to the constructive work of Koch and Wittwer
on the nontrivial fixed point."” The bifurcation picture is also described
within the frameork of a continuous hierarchical RG (as opposed to the
lattice approach) in the article of Felder.'”” Another investigation of the
e-expansion for the double-well fixed point was done by Collet and
Eckmann.®

The present contribution to the subject is an investigation of the flow
on the computer in terms of an algebraic formulation for the fixed points,
the critical indices, the eigenoperators, and the e-expansion.

The paper is organized as follows. It consists of two parts. The
hierarchical model is presented in Section2. The algebraic equations
(without normal ordering) are introduced and numerically solved in
Section 3. In Section 4 we compute the critical indices as eigenvalues of the
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linearized transformation around the fixed points. The second part starts
with Section 5. We present a concise derivation of a recursive g-expansion
as a power series solution to the algebraic equation in normai ordered
form. The expansion is computed using computer algebra. Its results are
compared with the numerical data.

2. THE MODEL

We consider hierarchical RG transformations, defined by

FoF,  F(g)= ] du () FG+Bp)*
1
B=’Ll_d/2 ( )

In Appendix A, we discuss the hierarchical model as an approximation of
a field-theoretic model and motivate the hierarchical RG transformation.

Here du, denotes the one-dimensional Gaussian measure with
covariance y > 0, defined through

2

[[du,) 101 = (272 [ dcexp (— ;‘—y) ) (2)

L denotes the block size of the corresponding blocking transformation. It
is not difficuit to convince oneself that

J L*—1
Fyr(g)=L"*" _”exp<— 2L° ¢2> (3)

is a fixed point of the transformation (1). Fyy is called high-temperature
fixed point. Let us write the Boltzmannian F as a product,

F(¢) = Fuxr(8) Z(9) (4)

The RG transformation of Z is again of the type (1),
ZeZ,  Z'@)=]du, () ZC+ )" (5)

with the changed parameters y’ and B’ given by
ﬂ’=L_l_d/2, yl=L-—2.y (6)

In the following, we shall always choose L4=2. As we shall see below,
this choice will lead to quadratic fixed-point equations. Note, however, that
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it is not obvious how to realize a block spin transformation for such a scale
factor on a lattice. For LY=2, we have

B=2—(d—2)/(2d), '81=2~(d+2)/(2d) (7)

Furthermore, we choose y such that y'=4(1—$?), ie,
r=42¥-4) ®)

This type of convention agrees with those of ref. 5. We study in this paper
the fixed points of the RG transformation (5) that are even in ¢, i.e., the
even solutions of the fixed-point equation

Z(9)= [ du, (0) 2+ p'9)™ 9)

Let us remark that if Z is a solution of the fixed-point equation (9), then
Z;s, where Zs(¢) ;= Z(64), 6 >0, is a solution of Eq. (9) if y’ is replaced by
7’6 2. The consequence of dealing with Z instead of F is that f is replaced
by B’ < B. This has important consequences in the constructive approach of
Koch and Wittwer.®

3. COMPUTATION OF NONTRIVIAL RG FIXED POINTS

A necessary ingredient for a successful study of the transformation (1)
is a good choice of coordinates. Good here means that already a
reasonable number of coupling constants provide a good approximation of
the full problem. Furthermore, good coordinates should also be easy to
deal with in practical calculations.

To study the transformation (1), one might consider the expansion of
F(¢) in powers of ¢. However, if such an expansion is truncated at a finite
order, the resulting approximation will probably not define a reasonable
(ie., positive) Boltzmannian. The problem is that the coefficients change
their sign from order to order, as in the Taylor expansion of exp(— x?).

A good choice (though perhaps not the best) is to use the split
equation (4) and consider a Taylor expansion of Z(¢) in powers of ¢. This
choice of coordinates has been successfully employed in a rigorous proof
that the transformation (1) has a nontrivial fixed point in d=3 dimen-
sions.® It has the advantage that the expansion coefficients do not fluctuate
in sign. Furthermore, the correct large-¢ behavior of the Boltzmannian is
implemented automatically.
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3.1. Expansion of Z in Powers of ¢?

Let us define a rescaled function P(¢) through

Z(¢)=P(4/(2y)"?) (10)

The RG transformation for P is

PP, P(@)=[dun) PC+BY) (1n

We expand P(¢) in powers of ¢7,

2/

P i
@#)= 2 Paran ™

The specific choice of normalization of the p, in Eq. (12) turned out to be
suitable for the numerical fixed-point solver to be described below. In terms
of the expansion coefficients p,, the RG reads

(12)

pIHp;= Z S;"" mpn (13)
with
1 —{+m+n (2(m+n))'
20 Z if 0</<
S = B (8) mn—DI @) @m) @my 7 T OSismtn
0 otherwise
(14)

If we look for an RG fixed point, we have to study the infinite set of
quadratic equations

=pF—2 Si"phpk (15)

mn

3.2. Numerical Solution of the Fixed-Point Equations

A straightforward numerical treatment of the problem defined by
Eq. (15) becomes possible if we truncate the sum over / in Eq. (12), intro-
ducing a highest index /

max?

Imax 2/

P(¢)=l§o P/W

(16)
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Then, of course, also the sums over m and » run only from O to /_,,, and
the fixed-point problem consists in the study of [.,,+1 quadratic
equations,

fi=0, 0<i< iy

ﬁ= Pi— Z S;n"pm Pu

m.n < Imax

(17)

We shall denote solutions of these equations by p*. We used the routine
CO5SNBF from the NAGLIB library® for a numerical solution of the fixed-
point equations in the range 2<d<4. Notice that the dimension
dependence enters through the B’ dependence of the structure coefficients
S7". The program requires an initial guess of the solution. If the program
is successful, it returns a solution, together with the values of the f, for this
particular solution. In Table I we show as an example the p}* for / ,, =10
and d =3, together with the f,* that can be considered as a measure of the
error of the solution.

We used truncation parameters /,, in the range 10-50. For the two-
well fixed points, /,, =20 was completely sufficient. To get an impression
of the finite-/,, effects, the reader is invited to study Table Il, where we
give the first 11 coefficients of the two-well fixed point in three dimensions
for I, =10, 20, and 30.

We define an effective potential V(¢) through

o F(¢)
V(¢) == —In <—F(¢=O)> (18)

In Fig. 1 we show our results for the two-well potential for d=2.1 through
d=73.8 in steps of 0.1. In all cases we used /_,, = 20. The deepest potential

max

Table I. The p} and f, for /_,, =10 in d=3 Dimensions

~

ot

Ji

—

O O 0B — O

0.752806717034 x 10 *°
0.481272697982 x 10*°
0.313506765870 x 10+°
0.186261032043 x 10*°
0.100696164171 x 10*°
0.499270725225x 10!
0.228929876623 x 10"
0.977563729148 x 102
0.390718140134 x 102
0.146546809430 x 102
0.515497714660 x 103

0.423398205312 x 1016
—0.113124959171 x 10~ "7
0.347242613663 x 107
—0.179714118083 x 10~ 17
0.395226286632 x 107
0.117550777471 x 10~ ¢
0.570517883570 x 10~ 17
0.622745240266 x 10~ "7
0.471372511658 x 1017
0.307351198867 x 10~ "7
0.122533903732 x 1017
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Table Il. The First 11 Coefficients p} of the 2-Well in d=3 Dimensions

for Three Different Vaiues of /

max

~

L =10

Lnax =20

max —

lmax = 30

O N 00NNV AW — O

0.752806717034 x 10~°
0.481272697982 % 10°°
0313506765870 x 10~°
0.186261032043 x 10~°
0.100696164171 x 10~°
0.499270725225x 10!
0.228929876623 x 10"
0977563729148 x 102
0.390718140134 x 10~
0.146546809430 x 10~
0.515497714660 x 10>

oo

0.752859732932x 10°°
0.481191004612 x 10 ~°
0.313445974082 x 10 ¢
0.186254920100 x 10~°
0.100729195010 x 10~°
0.499755196476 x 10!
0.229416956212 x 10!
0981866078064 x 10 ~*
0.394316100256 x 102
0.149410716099 x 102
0.536648340900 x 103

0.752859732933x 10°°
0481191004610 10-°
0.313445974081 x 10~°
0.186254920100 x 10~°
0.100729195011 x 10~
0.499755196485x 10~}
0.229416956222 x 10!
0981866078150 x 10 ~2
0.394316100333 x 10~
0.149410716173 x 10~
0.536648341727 x 103

oo

corresponds to d=2.1. With increasing dimension, the 2-well gets flatter
and flatter until it vanishes in four dimensions.

From naive power counting and the studies of Section 5, one expects
that n-well fixed points occur when the dimension goes below the threshold
d,=2n/(n—1). Note that exactly at these thresholds the operators ¢

V(PHI)

06

04 r—
02

02 F

06

08 L

Fig. 1. Our results for the 2-well potential for d=2.1 through d=3.8 in steps of 0.1. The
deepest potential corresponds to d = 2.1. With increasing dimension, the 2-well gets flatter and
fatter until it vanishes in four dimensions. In all cases we used /,,,, = 20.
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V(PHI)

PHI

Fig. 2. The fixed-point 3-wells for d=2.1 through d=2.7 in steps of 0.1. The deepest
potential corresponds to d=2.1, the flattest one to d=2.7. In all cases we used /,, = 20.

25 T T T T

V(PHI)

PHI

Fig. 3. The fixed-point 4-well potentials for d=2.1 and d=2.3. The potential with the deeper
wells corresponds to d=2.1. In both cases we used /,,,, = 30.
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become relevant with respect to the Gaussian fixed point. Thus 2-wells are
expected to exist for d <4, 3-wells for d <3, 4-wells for d < 8/3, and so on.

By starting our program with a suitable initial guess, we were able to
find the three-well potentials. Figure 2 shows the results for d= 2.1 through
d=2.7 in steps of 0.1. The deepest potential corresponds to d= 2.1, the flat-
test one to d=2.7. In all cases we used again /_,, = 20.

The search for the four-well potential was a bit more difficult. It
turned out that one needed more than 20 couplings for a reasonable
parametrization. Figure 3 shows the four-well potential in d=2.1 and in
d=2.3 dimensions. We used /_,, = 30 in both cases.

In all cases, we made a further check on our results as follows: We
represented the Boltzmannian F by its values on a grid of typically 300 sites
on the interval 0 < ¢ < A, where 4 was typically 10 or 20. The RG steps
were then done by numerically performing the integral (1), using the
NAGLIB routine DO1GAF. This routine determines an approximation of
an integral if the integrand is given on a finite number of points. All fixed
points determined by the algebraic method were converted to functions on
the ¢-grid and then checked for stability under iterated application of the
integration method.

4. THE LINEARIZED RENORMALIZATION GROUP

In this section we shall report on a numerical study of the eigenvalues
of the hierarchical RG, linearized around the nontrivial fixed points. Note
that the eigenvalues related to the full transformation (1) are the same as
those related to the transformation (5) for Z. The reason is that fixed
points F* and Z* differ only by the factor Fy;; that is a fixed point itself.
The transformation for Z around a fixed point parametrized by coor-
dinates p} is

(P +8) (pF+8))=3 S"(ph+3,)(p¥+3,) (19)

We expand to first order in 4,
5IH5;=ZRlnén (20)

and identify the linearized RG transformation with the matrix R,

Rln=2257mp:; (21)

m

The matrix R is not symmetric. It can, however, be shown that its eigen-
values are real (cf. Lemma 5.4 below). We used the NAGLIB procedures

822/77/5-6-3
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FO1AKF and FO02APF to compute all eigenvalues A; of R, with i=
0,..., Imax- All eigenvalues are positive in accordance with Corollary 2.3 of
ref. 5. We define

Jy=L% (22)

where L denotes the block size, in our case 2/

Table III shows, as an example, the first six eigenvalues a, of the
linearized RG around the 2-well, the 3-well, and the 4-well in d=2.1
dimensions, respectively. Positive eigenvalues a; are called relevant,
negative eigenvalues are called irrelevant, and a zero eigenvalue is called
marginal. In accordance with the expectation, the n-wells have n — 1 (non-
trivial) relevant eigenvalues.

One always observes an eigenvalue a,=d that corresponds to the
trivial volume operator. It corresponds to the fact that the fixed point Z*
itself is an eigenvector with eigenvalue A,=2. The next eigenvalue a, is
related to the critical exponent v, via''?

y=— (23)

In Table IV we show our results for the exponent v for d=2.1 through
d=328 in the case of a 2-well. It is interesting to compare the d=3 result
with the exponent v for the three-dimensional Ising model. The best known
estimates for the latter are in the range 0.624-0.630."'") For d— 2, the
deviation of the exponent v from the value in the full model increases. We
know from the exact solution of the two-dimensional Ising model that v=1
for d=2. In the hierarchical model we observe v> 2 already at d=2.1.

It is interesting to look at the eigenvectors of the linearized RG
transformation. As an example we consider the eigenvectors of the transfor-
mation (1), linearized around the trivial fixed point F*(¢)=1 and around

Table Ill. The Six Leading Eigenvalues a; at d=2.1 for the 2-Waell,
the 3-Well, and the 4-Well, Respectively

i 2-well 3-well 4-well

0 2.1000000 2.1000000 2.1000000
1 0.4787297 1.9715290 1.9851950
2 —1.1724335 0.4611953 1.0966180
3 —3.3445644 —0.7546772 0.4105210
4 —5.8303542 —~2.2270214 —5.6565547
5 —8.4946711 —3.9790124 —1.7706071
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Table IV. Results for the Critical Exponent v in the
Hierarchical Model for the 2-Wael|

d v d v
2.1 2.08886 30 0.64957
22 1.36234 31 0.62570
2.3 1.09916 32 0.60484
24 0.95704 33 0:58640
25 0.86534 34 0.56995
2.6 0.79985 35 0.55516
2.7 0.74993 36 0.54182
2.8 0.71011 3.7 0.52973
29 0.67729 3.8 0.51877

the nontrivial two-well fixed point in d=3 dimensions. The eigenvectors
0'°)(¢) for the linearization around F* =1 can be given exactly:

00(¢)=const Hi, (%) (24)
2y
with
Y
1—- ﬂz

12 T T T T T T L T

7 (25)

O_L(PHI), O_2(PHI)

0 0.5 i 1.5 2 2.5 3 35 4 45 5

Fig. 4. Comparison of the two leading eigenvectors of the RG transformation linearized
around the trivial fixed point and the 2-well fixed point in d = 3. The single-well-shaped func-
tions correspond to the relevant eigenvalue. The double-well-shaped functions correspond to
the first irrelevant eigenvalue. The full lines belong to the nontrivial fixed point.
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The H, denote the Hermite polynomials. We compare these functions for
i=1, 2 with the corresponding eigenvectors of the RG linearized around
the two-well fixed point in d = 3; see Fig. 4. The figure shows that the eigen-
vectors in d=3 are of similar shape as the corresponding functions for the
trivial fixed point. Note, however, that the “full” eigenvectors contain a
factor Fyr and thus have a completely different large-¢ behavior than
the Hermite polynomials.

5. eEXPANSION

In this section, we want to compare the numerical results obtained in
the previous section with expansions in ¢ =d* — d, where d* is one of the
threshold dimensions d, =2n/(n— 1). This section is organized as follows:
In Section 5.1 a parametrization of the hierarchical Boltzmannian is intro-
duced that is suitable for the e-expansion. The recursion relations for the
expansion coefficients a{*’ are derived in Section 5.2. In Section 5.3 we
derive the recursion relations for the computation of the ¢-expansion for
the eigenvalues and eigenvectors of the linearized e-expansion. In
Section 5.4 we give some comparisons of the es-expansion results with the
numerical results.

In ref. 6 it is shown that the ¢-expansion is locally Borel summable.

5.1. Expansion of F in Wick Monomials

We consider the expansion of the Boltzmannian F in terms of normal
ordered powers of ¢>. This expansion shall be the basis for the ¢-expansion
to be studied below. One expands in terms of normal ordered monomials

ar o
Fig)=3 =4 (26)
1>0?
The reason to divide the coefficients a, by 7' is that g, becomes

7-independent for the fixed point. Under an RG step the coordinates g,
transform according to

aIH a; = ﬁll Z (g;""aman (27)
mn

The sum in Eq. (27} is restricted to |m—n| </<m+n, and the “structure
coefficients” are given by

2m)! (2n)!
(m+n—NN{U+n—m) (I+m—n)!

mn __

{

(28)
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Normal ordering with respect to a covariance 7 is defined through

:exp(ag):; = exp (— %a2+a¢> (29)

The normal ordered powers of ¢ can be expressed in terms of Hermite

polynomials,
o ,)-, n/2 ¢
vi=(3) () (30)

That we use a direct expansion of F as a basis for the e-expansion seems
to be in contradiction to our statement above that it should be much better
to use the split F= Fyr Z, and then expand Z. The ¢-expansion is, however,
an expansion about F=1 (and not about Z=1). Furthermore, as we shall
see from the recursion relations to be derived below, the effective
Boltzmannians to a given order in ¢ live in a finite-dimensional space of
coupling constants. It is thus irrelevant which coordinates are chosen in
this space as long as they span this space.

5.2. e-Expansion for the a,

In this section we derive the recursive relations for the coefficients a{*)
defined through

a,= Y af% (31)

k=0

We determine by e-expansion the coefficients of the infrared fixed point at
d=d* —¢ dimensions starting from the trivial fixed point in d*:=
2[*/(1* — 1) dimensions, where /* € {2, 3,..}. The following lemma shows
how to compute the a!*’ recursively.

Lemma 5.1. Suppose that the coefficients (8~ *)"™ are defined by

B—ZI=2I/I‘ i (ﬁ—ZI)(m)sm (32)

m=0

For /*e{2,3,..} and a\® =4,,, we have

287

{1) .
al'=0ud o

/ L%y - 1*]*
R

(33)
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and, for all /#/* N>1,

1 N-1 .
a;N)=2///T5 kz [_2//1 (ﬂ—ZI)(N—k) a;k)+ z (g;nnaﬁnN—k)aLk)] (34)
=1 m.n
For all N> 2,
1 N-1
a = - (1,{—2[(ﬂ-2")‘”’a+ ) (ﬁ-”‘)‘"“—“a%’]
2(877) ko2
N—1
+ 3 Yemairi-hao+2 Y ‘67’."01,,”’0:} (35)
k=2 mn mmE*

Proof. The Nth-order term of the fixed-point equation

B-21a1= Z (f;""ama” (36)
is given by
N N
2:‘/1‘ z (B—2I)(N—k) a;k)= Z 2 (g;nnaL‘N—k)aLk) (37)
k=0 k=0 mn

Since a{® =4, and (8~°)" =0 for n> 0, we obtain

N-1 N-—1
2 (a4 T (P aP =204 T T eratal (38)

k=1 k=1 mn

We have used ¢7°=34,,,. Equation (38) implies for /#/* Eq.(34).
Consider Eq. (38) for the case N=1:

2 g (VD =241 (39)

This implies a{"’ =«4,,.. To determine the constant «, we have to consider
Eq. (38) for the case N=2, I=[*:

2(8=")" af) =€/ (af)) (40)
This implies
2 —2I*\(1)
4 :=_(%ﬂ‘l—')- (41)
Ie

Let us consider Eq. (38) for the case N >3, I=1*:

N-—1 N—-1
2 Z (‘B—ZI.)(N—I‘)G;I:)= Z Z (g;n‘naf,l'\’—k)ailk) (42)
k=1 k

=1 mn
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This implies
. N-2
2|:(ﬂ—21 )(N—l)a+(ﬂ—2l )(l)a;[“l—-l)+ Z (ﬁ—Zl )(N—k)a;I:)jl

k=2
N=2
=22‘€}"."af£"”a+ Z z%;”."af,,N_k’ai,k’ (43)
m k=2 mmn
Thus,
1 Niz k
= {2 (e T (B aft |
: 2B~ - €1 ") ’
N-2
+2 Z %;”."a:,’,v'”a+z Z‘gfl"af,,"_k’af,")} (44)
m.ms£l* k=2 mn

Using ¢'2"a=2(f~%")" and replacing N by N + 1, we obtain Eq. (35). 1
1

With the following lemma we provide explicit expressions for the
g-expansion of 2.

Lemma 5.2. Suppose that the coefficients (87') of the
¢-expansion for the term f~/ are defined by

B—I=2I/2[‘ i (B—I)(m)em (45)
m=0

Then, we have (7)) =1 and

ol lIn2\"~* (m—1
Bm=73 (m_k)!(— d“) (’"k )d*-m (46)

k=0

form=1.

Proof. We have

B! = 2RI N1 —d*d) — I21* ey I:liin*z <1 - _lg/d*>] (47)

Expansion of the exponential function on the rhs of Eq. (47) gives

e[ 21 1I2)” Loy
pri=2m [” L F( d*) (1‘1_£/d)] (48)

n=1""
n+k—1\/ e \*
(O)E e

Furthermore,

(=) (-7,

18
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Insertion of Eq. (49) into Eq. (48) yields

o L3 STE TN o

n=1"" k=0

Introducing a new variable m=n+ke {1, 2,..}, we obtain
E st [In2\"~* (m—1

—/= 121+ _ d*—m m

ﬁ 2 {1+mz=l[k§0(m_k)|( d* ) ( k > :|8 }

This implies the assertion. ||

5.3. e-Expansion for the Linearized RG

We shall now consider the eigenvalue problem for the linearized RG
equation. The eigenvalues and eigenvectors are computed by using the
e-expansion.

The linearized RG transformation is given by the matrix U(a), with
matrix elements

Un/(a) :=2BZIZ (g;’mam (52)

m

Lemma 5.3. Consider the eigenvalue equation for the linearized
RG equation

Ula)b=1b (53)

Suppose that the vector a in d=d* —¢ dimensions, d*=2/*/(/*—1),
I*e {2,3,..}, is given by the e-expansion

a,= y ale (54)

k:ik=20

and the e-expansion of U is
U=) U®%k (55)
k
Suppose that the e-expansions of b and 4 are given by

b= Y bmem, A= Y At (56)

mmz0 nnz0
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Suppose that 59=3§, , and A@=2'"""" for me {0, 1, 2,..}. Then, we
have

N-—1

AN =3 LULTb (57)
n=0 m
and, for I#m,
b= s B, LU - UL (5
Furthermore,

bM=0 (59)
The proof of this lemma will be given later.

Lemma 5.4. U(a) is symmetric with respect to the canonical scalar
product, defined by

(a,b):=3 a,b, (60)
Proof. We have
(u, Ula)v)=3 u, T, (61)
ml
where

T, :=(g—:;! U, (62)

Since T,,=T,,, we have
(u, Ula) v)=(U(a) u,v) 1 (63)

Lemma 5.4 shows that the eigenvalues of U(a) are real. The next
lemma shows how to compute the e-expansion for the eigenvectors and
eigenvalues.

Lemma 5.5. Suppose that the linearized RG group equation is
given by the series expansion

Ua)= Y U"a)¢" (64)

nnz0
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and that the zeroth-order term U'® is symmetric. Let b be an eigenvector
with eigenvalue A of U(a), i.e.,

U(a) b= b (65)
Let 5'© be a normalized eigenvector with eigenvalue 1'? of U (a), ie.,
U(O)(a) b® = /I‘O)b(o), (b(O)’ b(O)) =1 (66)

where the scalar product (-, -) is defined by Eq. (60). Suppose that the
eigenvalue A‘¥ is not degenerate. Then, there exists an e-expansion for the
eigenvector b with eigenvalue 4

b=z blmem, l=Z/1‘"’e” (67)
such that
(6%, "My =0 (68)

for all N> 0. The coefficients 5*’ and A'™ are recursively determined by

N—1

AN = Z (b(O), U(N—n)b(n)) (69)
n=0
and
N—1 1
b(N)= (U(O)—A(O’)_l I: Z (U(N_")—l(N_"))b‘"’] (70)
n=0
where u* is the component of u perpendicular to 5, |
Proof. The eigenvalue equation implies, for all N,
z (U("')b(")—l(m’b("))=0 (71)
mn.m+n=N
Thus,
N—1
(U(O)_A(O)) hWM) — Z (U(N_")—A(N"")) bim (72)

n=0

Since (U —219)p® =0, we may add to »'™, N>0, on the lhs of
Eq. (72) a multiple of vector 4 such that Eq. (88) holds. Scalar multi-
plication of Eq. (72) with b gives

(b(O), (U(o)—l(o)) b(N’)= ! (b(O), (U(N—n)_A(N—n)) b(n)) (73)
=0

n=
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Since U'® is symmetric, the lhs of Eq. (73) is zero. Therefore Eq. (69) is
valid. Since the rhs of Eq. (72) is perpendicular to 5 Eq.(70) can be
computed by Eq. (72). |

The next lemma presents the e-expansion of the linearized RG trans-
formation U{a).

Lemma 5.6. Let the e-expansion of % be
ﬂ21= 2—///' Z (ﬁzi)(m) Gm, (ﬂZi)(O) — 1 (74)
m=0

for /*€ {2, 3,..}. Then the ¢-expansion of U

U=Y Uk (75)
k
is explicitly given by
U(k) 21—///‘ 2 Z(gmn ﬂZI)(k r)a(r) (76)
r=0 m

The proof of the foregoing lemma follows immediately from the
definitions.

For the recursive computation of the coefficients for the eigenvalues
and eigenvectors we need the start values of the recursion relations which
are eigenvalues and eigenvectors of U,

Lemma 5.7. Suppose that a’® =34, ,. The normalized eigenvectors
b'® with eigenvaiues 1‘® of U© are

b =0pp  AO=2"7C (17)
for all me {0, 1, 2,...}.
Proof. We have, using a'®' =34, 4, €7"=6,,,
vQ=21-,, (78)
Thus
(U@, =21 =78, ,=2' b0 ] (19)
We finish this subsection with the proof of Lemma 5.3.

Proof of Lemma 5.3. By Lemma 5.5, Eq.(69), follows Eq.(57).
Since

U(O) 2l—l/1‘5 nls A(O) 21 m/l* (80)
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we have
(U(o)_lw))nl=2(2_”[‘—2_';’//.)5:1.1 (81)
Therefore

1
(0) _ 20y ~1 _ —
(U 4 )nl 2(2—1/1'_2—m/l )

611,/ (82)
Thus, Eq. (70) of Lemma 5.5 implies Eq. (58). |

5.4. Comparison of e-Expansion with Numerical Results

We evaluated the recursion relations presented in the preceding sub-
section using the computer algebra program Maple V Release 2. This
allowed us to go to relatively high order. We always used programs that
computed everything exactly (in the form of analytical expressions) and
programs that solved the recursion relations numerically. Note, however,
that Maple allows for arbitrary high precision in the numerical computa-
tions. It was no problem to compute the coefficients a!™ for d* =4 exactly
to sixth order in &. However, the expressions become quite nasty then. As
an example we present the coefficients a{™ up to n=13 in Appendix B. The
general structure for the expansion around d* =4 is that at a given order

0.08 T T T T T T T

V(PHI)

PHI

Fig. 5. Comparison of the “true” 2-well potential at ¢=3.8 with the first- and fourth-order
e-expansion. The full line gives the result obtained numerically, and the dashed lines give the
first- and fourth-order approximations, respectively.
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Table V. Numerical Results of a, and a, for n from 10 to 16

n al" af"

10 4.59314 x 10" —2.89444 x 102
11 —3.41664 x 102 226283 x 10°
12 2.70284 x 10° —1.87364 x 10*
13 —2.26138 x 10* 1.63588 x 10°
14 1.99286 x 10° —1.50104 x 10°
15 —1.84404 x 10° 1.44371 x 107
16 1.78725 x 107 —1.45243 x 10®

n the only nonvanishing coefficients are those with /<2n. The
corresponding relation at d* =3 is /< 3n. The e-expansion is expected to
have zero convergence radius. However, the series are believed to be Borel-
summable. For small ¢ even the naively summed low-order series can be a
quite good approximation. In Fig. 5 we show the comparison of the “true”
two-well potential at d=3.8 with the first- and fourth-order e-expansion.
The full line gives the result obtained numerically, and the dashed lines give
the first- and fourth-order approximations, respectively.

With the numerical version of the program it was no problem to go
to orders like 16. In Table V we show the intimidating growth of the
expansion coefficients when the order becomes large.

With the help of the recursion relations of the preceding subsections
we also determined the e-expansion for the exponent v. We again used an
exact version of the program that was practicable up to order 6, and a
numerical version that could be used to higher order.

In Table VI we show our results for the expansion coefficients of v,
compared with those of the full model."'?’ The first two orders are exactly

Table VI. Comparison of the e-Expansion Coefficients
of v in the Hierarchical Model v; with
the Ones in the Full Model v, ,

i v; Vis

0 0.5000 0.5000
1 0.0833 0.0833
2 0.0556 0.0445
3 —0.0324 —0.0190
4 0.1468 0.0888
5 —0.5743 —0.2015
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Table VII. Results of Resummed Series for v up to Order €* for k< 5°

d k=1 k=2 k=3 k=4 k=5 “true” BP

30 0.6161 0.6523 0.6060 0.8255 0.3639 0.64957 —

31 0.6007 0.6293 0.5961 0.7228 0.4235 0.62570 0.62599
32 0.5864 0.6084 0.5855 0.6580 0.4771 0.60484 0.60136
33 0.5730 0.5895 0.5744 0.6144 0.5160 0.58640 0.58791
34 0.5605 0.5723 0.5630 0.5837 0.5369 0.56995 0.56973
35 0.5487 0.5568 0.5515 0.5612 0.5423 0.55516 0.55525
36 0.5377 0.5428 0.5402 0.5440 0.5379 0.54181 0.54183
37 0.5274 0.5302 0.5291 0.5303 0.5289 0.52973 0.52973
38 0.5177 0.5190 0.5186 0.5189 0.5187 0.51877 0.51877

@“true” is the numerical result, BP is the result of a Borel-Padé summation explained in the
text.

the same (the coefficient v, is 1/12 in the hierarchical and in the full model).
This might be due to the fact that the e-expansion of the exponent # starts
at order &2

In Table VII we give the results of resummed series for v up to order
e for k<5, and d=3.0-3.8. For the larger values of ¢, the signal of the
divergence of the series is obvious. For comparison we also quote our
numerical result (“true”) and the result of a Borel-Padé summation of the
sixth-order e-expansion (BP). The latter was obtained as follows: The v,
were divided by /!, and the diagonal Padé approximation of the resuiting
Taylor series was determined. From the resulting rational function Q(e) the
estimate for v was then obtained by numerically computing

v(e)=fo°° dr exp(—1) Q(t¢) (83)

There is a quite good agreement with the “true” results. (For d=3, the
diagonal Padé of the Borel transform had a nonintegrable singularity on
the positive real axis.)

6. CONCLUSIONS

In this paper, we have computed and studied fixed points and
exponents of hierarchical models. An extension to N-component models
and general values of L could be easily done. Of course, many new ideas
are necessary to do the same thing in full models. The crucial question here
is the proper choice of parametrization of the Boltzmannian. An interesting
problem which certainly deserves study is whether the ¢-expansion for the
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RG flow (in the Wilson sense) in full models could be performed to an
order that is competitive with what has been done in the conventional
framework.

APPENDIX A. FIELD THEORY AND HIERARCHICAL MODELS

This appendix discusses the hierarchical model as an approximation of
a field-theoretic model and motivates the hierarchical RG equation.

The generating functional for Green’s functions of a scalar field theory
on a d-dimensional continuum R¢ is given by the following (formal)
infinite-dimensional integral:

zZ[J] 2=-/Vf [T dé(z)expl —3(4, —44)] exp[— V() +(J, 4)] (Al)
zeR?
where ¢ is a scalar field and J is an external source on R” Here V($)=
§:ere ¥ (4(2)) is the local interaction term and 5(#, —4¢) is the free part
of the action. 4 is the Laplacian, and 4" is a normalization factor chosen
such that

du,(p) := A" [] dp(z)exp[—3(¢, —44)] (A2)
zeR?

is a normalized Gaussian measure, v is called the propagator. The canonical
scalar product is defined by

% ¥):=|

€

ARG (A3)

for fields ¢, ¥ on R<
For RG calculations it is more convenient to use generating func-
tionals with external fields y,

Z(y) 1= [ du(9) exp[— V(g +¥)] (A4)

The two generating functionals are related by
Z(Y)=Z[J] exp[ —3(J, V)1 1,=v-1y (AS)

For the definition of the hierarchical model, we introduce the notion of a
hierarchical lattice (or multigrid). For Le {2, 3,...} and je Z divide R? into
hypercubes of side length a; := L a, where a is a unit length. Denote the
set of all these hypercubes by 4;. We can consider 4; as a lattice with lat-
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tice spacing a; by identifying the centers of the hypercubes with the lattice
sites. The location of the hypercubes can be chosen in the following way.
For a hypercube ye 4, let j be the open hypercube of y. For ye 4, and
x € A, we suppose that y " x = J or j = x. In the latter case we write y € x.
The hierarchical approximation is given by the replacement

v Y v/ (A6)
JjeZ
where, for z, z' € R,
vi(z,z')i=a? "o, (A7)

Here, x and x’ are the uniquely determined hypercubes of A; such that
zex, 2’ ex’. We call v/ the fluctuation propagator. The above replacement
represents the fact that in general v can be decomposed into a sum of fluc-
tuation propagators which are exponentially decaying with decay length a;.
This exponential decay is simulated by the Kronecker delta on the rhs of
Eq. (A7). There are other ways to define the hierarchical approximation.
But all hierarchical approximations share the property that the fluctuation
propagators v/ have compact support. Insertion of replacement (A6) into
Eq. (A4) yields, using the convolution formula of Gaussian measures,

20)=[ [ duo@o| (L ¢'+v)] (A8)

We define an ultraviolet cutoff by setting the propagator v/ =0 if j>» and
an infrared cutoff by setting v¥ =0 if k < J:
zpw)=] 1 an@res|-v( 3 o4v)] 4
i=j+1 i=f41

The effective generating functions Z{™ and Z|", are related by
Z ) = [ dus () Z(@ + ) (A10)

Since we started with a local interaction V, the effective generating func-
tions obey the following factorization property:

zPW)= [l Zrly) (All)

yivedq,;
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Since the kernel of v/ is constant on hypercubes of 4;, we can assume that
the fields § are constant arguments of Z!", ie., do not depend on zeR?
Therefore, Eq. (A10) is equivalent to

z0 )= 11 U duv,(¢)z;"’(y|¢+w)] (A12)

for xe A;_,. For translation-invariant models Z {"(y|¢) does not depend
on ye A;. Let us define

Z"(@) :=Z"(y|a} =) (A13)

From Eq. (A12) and definition Eq. (A13) follows, using ¢ — a} =%y,

x

z;"_’,(w)=[j () z;-")(¢+L'-'”2w)} (A14)

For F':= (Z;"_’J’-“d and F:= (Z}"’)L-d, we obtain the hierarchical RG
transformation (1).

APPENDIX B. SOME RESULTS OF e-EXPANSION FOR THE a{™

R:=In2
B1
T:=\/§ (B
al =1
RZ
@ - _
o 864
O _12R*(3R—2)—R*(19R—18) T
o - —311047 + 41472
a® = R
LT216T—432

o _ —2RYTR—8)+R¥IR—12)T
172807 — 24192

R
m
@ 144

40 = 12RBR—2)—R(19R—18) T
L — 103687 + 13824

822/77/5-64
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s, _ R(IS4R*+ 1161R—459)— 12R(8R*+ 69R—27) T
= — 746496 T + 1057536

R2
a(Z) - -
} 2592T— 2592

_ —8RYR—1)+RSR—6)T

a® =
3 72576 T — 103680
RZ

) _

94 = 4an2

5 _ —12R(3R—2)+ R’35R—18) T
as" = 14929927 + 1990656

a® = — R’

s 3732487 — 373248

R3
3 - (B2
s 17915904 )
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