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We compute hierarchical renormalization-group fixed points as solutions to an 
algebraic equation for the coupling constants. This method does not rely on an 
iteration of renormalization-group transformations and therefore avoids the 
problem of fine tuning. We solve truncated versions of the fixed-point equation 
numerically for different values of the dimension parameter in the range 
2 < d < 4 and different orders of truncations. The method is well suited even for 
multicritical fixed points with any number of unstable directions. Precise 
numerical data are presented for the first three nontrivial fixed points and their 
critical indices. We also develop an e-expansion for the hierarchical models 
using computer algebra. The numerical results are compared with the 
e-expansion. 

KEY WORDS: Renormalization group; renormalization-group fixed points; 
hierarchical model; epsilon-expansion; critical exponents. 

1. INTRODUCTION 

The renormalizat ion group (RG) I~ is a nonper turbat ive  approach to 
critical phenomena  in statistical mechanics and Euclidean field theory. It 
offers a satisfactory explanat ion for the behavior of statistical models in the 
critical regime, in particular the appearance of universal quantities. It also 
suggests block spin transformations as an actual scheme for computat ions  
of critical quantities. Last but not least, it has proved to be a powerful tool 
in rigorous investigations. Although a lot of effort has been put into the 
subject since the seminal work of Wilson, it is far from being closed. 

The main idea is to think of a critical system in terms of the flow of 
effective actions generated by a block spin transformation. This flow will 
have fixed points. An instructive example is a system with two possible 
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phases separated by a second-order transition in the absence of an external 
field. Then we typically find two stable fixed points characterizing the 
different phases and one unstable fixed point signaling a phase transition. 
Critical indices can be calculated as eigenvalues of a linearized transforma- 
tion at the unstable fixed point. Given any critical system, the most 
important task is thus the determination of its RG flow fixed points and 
the flow in their vicinity. 

Let us consider a Euclidean scalar field on a d-dimensional unit lattice 
A. The action is S(~b)= So(~b)+ V(~b), with V(-~b) = V(~b). The interaction 
is called local if the Boltzmann factor exp( - V(~b)) factorizes into a product 
I~x~A F(q~(x)). Unfortunately, locality is only preserved in an approximate 
sense by block spin transformations. A main technical difficulty therefore is 
to find an efficient parametrization of the effective actions generated by the 
flow. Also it is not a priori clear what the best choice for the block spin is. 
A guideline is to demand the effective actions to be approximately as local 
as possible. 

The block spin transformation which we will consider here relies on a 
decomposition of the Gaussian measure dpv(~b) [determined by the free 
action S0(~b)] into a background and a fluctuation part. The free 
covariance (propagator) is v = ( - d ) - %  The block spin transformation 
then consists of an integration step, a rescaling step of the background field 
and the block lattice, and a subsequent subtraction of the field-independent 
term. In this setup the nonlocality of the effective interaction is traced back 
to the fact that the fluctuation covariance, despite its exponential decay, 
couples fields further apart than a block distance. 

In the hierarchical model 12~ the free covariance ( - d ) - '  is replaced by 
a hierarchical counterpart ( - d ) ~ r .  Both covariances share a similar long- 
distance decay, although the hierarchical covariance is not translation 
invariant, and the models therefore behave similarly in the critical region. 
As a gain, the hierarchical block spin transformation preserves locality in 
a strict sense. A hierarchical RG step turns out to be a nonlinear transfor- 
mation of the local Boltzmann factor F(~b), which is a function of a single 
variable rather than a functional of a field configuration. 

One point of view is to think of a hierarchical model as an approxima- 
tion to its full brother. This is obviously only justified if there exists an 
interpolation between the two which admits the computation of systematic 
corrections around the hierarchical situation. Such a scheme is still lacking, 
although a number of first steps into this direction can be found in the 
literature (see, e.g., ref. 3). The main difference between the hierarchical and 
the full model is the absence of wave function renormalization in the 
former. Wave function renormalization comes about in the full model 
because the effective interaction contains a kinetic term as a part of the 
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quadratic piece. This is clearly discarded once the effective action is forced 
to be ultralocal. 

A second point of view is to think of hierarchical models as nontrivial 
statistical models by themselves which are perfectly suited for the RG 
approach. Due to their nontrivial interaction they are far from being 
exactly solvable. Their phase structure and critical behavior are as rich and 
complicated as in the full case. This point of view seems somewhat 
academic since we do not know of any real ensembles which belong to the 
universality class of a hierarchical model. Real systems do not show this 
peculiar breaking of translation invariance. 

The third point of view is to consider hierarchical models as a test 
ground for both concepts and methods toward the RG treatment of the full 
model. The problem of nonlocalities in the effective action is believed to be 
of purely technical nature. This is convincingly supported by rigorous 
studies of many full critical models (e.g., refs. 4) which have been preceded 
by studies of their hierarchical counterparts. A full RG flow will always 
contain as a part a flow of local quantities which is accurately modeled by 
a hierarchical flow. 

An exciting possibility within the hierarchical context is to tune the 
dimension parameter d away from integer values. The hierarchical transfor- 
mation does not involve any lattice geometry and contains d and a scale 
parameter L as variables which can be taken real-valued. Let us stress that 
this can be done completely independent of perturbation theory. A beautiful 
picture emerges that shows a sequence of thresholds between two and four 
dimensions where new fixed points appear. For instance, four dimensions 
is the threshold below which an unstable double-well fixed point exists 
which governs three-dimensional physics. This picture is believed to be true 
also in the full model, although we do not know of an RG formulation 
which incorporates lattice geometry only in the form of a dimension 
parameter which can be tuned at will. 

In this paper we investigate the question of RG flows in the hierarchical 
model. Usually small coupling constants are required to do analytically 
such an investigation. To study infrared fixed points we have no small 
coupling parameters at hand. Nevertheless, we will show that we can do 
RG calculations for models which are not asymptotically free, by using 
some algebraic equations. 

After splitting off the quadratic fixed point, which corresponds to the 
unordered phase, we expand the Boltzmann factor in terms of local 
operators. We will use two kinds of operators, simple powers of fields and 
normal ordered products. Then the fixed-point equation becomes a set of 
algebraic equations for the coupling constants. We truncate this system and 
solve it numerically. 
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For the fact that truncation of the infinite system leads to correct 
results and how errors are estimated we refer to the work of Koch and 
Wittwer. tS~ See also the more recent work in ref. 6. In ref. 5 it was shown 
by an exact fl-function technique using certain norms that the infrared fixed 
point exists in three dimensions. In ref. 6, tools and methods are developed 
to control and estimate truncation errors. 

The direct computation turns out to be much better than searching for 
fixed points by iterating block spin transformations and fine tuning the 
initial values. It allows us to determine even the higher fixed points with 
multidimensional unstable manifolds to high accuracy. Then we linearize 
this set of equations and diagonalize it numerically around the various 
fixed points. This directly computes the critical indices of the hierarchical 
model without having to rely on any kind of expansions. 

The algebraic equations can also be written down for the full model in 
terms of a polymer expansion. It is less clear then how to truncate this 
system to a reasonable size. But we believe that this is manageable and will 
admit a similar numerical treatment. 

The algebraic equations can be solved for any value of d >  2. Inserting 
a power series ansatz in e for the coupling constants at d =  4 - e ,  we obtain 
the e-expansion for the double-well fixed point and analogously at the 
other critical dimensions. The resulting set of equations can be put into a 
recursive form which we iterate exactly using computer algebra. We 
compare this e-expansion with the numerical results of the previous 
computations both for the fixed points and the critical indices. 

Finally, we investigate the flow around the fixed points in terms of the 
eigenoperators of the linearized flow. It turns out that the eigenoperators 
at the double-well fixed point are approximately normal ordered powers in 
a small-field region but show exponential decay at large fields. 

Hierarchical models have been investigated by many authors. Our 
approach is close to the constructive work of Koch and Wittwer 
on the nontrivial fixed pointJ 5) The bifurcation picture is also described 
within the frameork of a continuous hierarchical RG (as opposed to the 
lattice approach) in the article of Felder/7~ Another investigation of the 
e-expansion for the double-well fixed point was done by Collet and 
Eckmann.~S) 

The present contribution to the subject is an investigation of the flow 
on the computer in terms of an algebraic formulation for the fixed points, 
the critical indices, the eigenoperators, and the e-expansion. 

The paper is organized as follows. It consists of two parts. The 
hierarchical model is presented in Section 2. The algebraic equations 
(without normal ordering) are introduced and numerically solved in 
Section 3. In Section 4 we compute the critical indices as eigenvalues of the 
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linearized transformation around the fixed points. The second part starts 
with Section 5. We present a concise derivation of a recursive e-expansion 
as a power series solution to the algebraic equation in normal ordered 
form. The expansion is computed using computer algebra. Its results are 
compared with the numerical data. 

2. T H E  M O D E L  

We consider hierarchical RG transformations, defined by 

f, 
F', = j F(( + 

(1) 
fl = L l -a/2 

In Appendix A, we discuss the hierarchical model as an approximation of 
a field-theoretic model and motivate the hierarchical RG transformation. 

Here dlx~, denotes the one-dimensional Gaussian measure with 
covariance y > 0, defined through 

f d i J ; , ( x ) f ( x )=(2rry ) - ' / z f  dvexp f ( x )  (2) 
oc 

L denotes the block size of the corresponding blocking transformation. It 
is not difficult to convince oneself that 

( " - 1  ) 
F H T ( ~ )  = LI/It/- 11 exp 2) JLd (~2 (3) 

is a fixed point of the transformation (1). FHT is called high-temperature 
fixed point. Let us write the Boltzmannian F as a product, 

F(~b) = FHT(~b) Z(~b) (4) 

The RG transformation of Z is again of the type (1), 

Z ~ Z ' ,  Z ' ( ~ ) = I d ~ , , ( ( ) Z ( ~ + f l ' ~ ) L ~  (5) 

with the changed parameters y' and fl' given by 

f l ' = L  - ' -d/2 , y ' =  L-2y (6) 

In the following, we shall always choose L d= 2. AS we shall see below, 
this choice will lead to quadratic fixed-point equations. Note, however, that 
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it is not obvious how to realize a block spin transformation for such a scale 
factor on a lattice. For Ld= 2, we have 

f l= 2 - Id -  "--I/t2d~, f l '=  2 -{a+ 21/~2a~ (7) 

Furthermore, we choose }, such that 7 '=  �89 _fl,2), i.e., 

~, = 2'-(2 - ~ / ' -  �89 (8) 

This type of convention agrees with those of ref. 5. We study in this paper 
the fixed points of the RG transformation (5) that are even in ~b, i.e., the 
even solutions of the fixed-point equation 

z(~) = f d~,. (~) Z(; +/~'~)~ (9) 

Let us remark that if Z is a solution of the fixed-point equation (9), then 
Z6, where Z6(~b) := Z(6(~), 6 > 0, is a solution of Eq. (9) if 7' is replaced by 
7'6-2. The consequence of dealing with Z instead of F is that fl is replaced 
by fl' < ft. This has important consequences in the constructive approach of 
Koch and Wittwer. tS~ 

3. C O M P U T A T I O N  OF NONTRIVIAL RG FIXED POINTS 

A necessary ingredient for a successful study of the transformation (1) 
is a good choice of coordinates. Good here means that already a 
reasonable number of coupling constants provide a good approximation of 
the full problem. Furthermore, good coordinates should also be easy to 
deal with in practical calculations. 

To study the transformation (1), one might consider the expansion of 
F(#) in powers of ~b. However, if such an expansion is truncated at a finite 
order, the resulting approximation will probably not define a reasonable 
(i.e., positive) Boltzmannian. The problem is that the coefficients change 
their sign from order to order, as in the Taylor expansion of exp( -x2) .  

A good choice (though perhaps not the best) is to use the split 
equation (4) and consider a Taylor expansion of Z(~b) in powers of ~. This 
choice of coordinates has been successfully employed in a rigorous proof 
that the transformation (1) has a nontrivial fixed point in d =  3 dimen- 
sions, tS~ It has the advantage that the expansion coefficients do not fluctuate 
in sign. Furthermore, the correct iarge-~b behavior of the Boltzmannian is 
implemented automatically. 
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3.1. Expansion of Z in Powers of ~a 

Let us define a rescaled function P(~b) through 

Z(~ ) = P((~/(27') '/2) (10) 

The RG transformat ion for P is 

P~-~ P', P't(~)= t dl~,/2(;) Pt( + fl'(~)2 (11) 

We expand P(4) in powers of ~2, 

P(~)= ~ p,2,[(21)!],/2 (12) 
t~o 

The specific choice of normalizat ion of the p~ in Eq. (12) turned out to be 
suitable for the numerical fixed-point solver to be described below. In terms 
of the expansion coefficients Pt, the RG reads 

p/~-* p;= ~ ST'"p,,,p, (13) 
m,  n 

with 

,2/ _ if O<~l<~rn+n 
S~"" = (m + n - l)! [(2l)! (2m)! (2n)! ] 1/_, 

otherwise 

(14) 

If we look for an R G  fixed point, we have to study the infinite set of 
quadrat ic  equations 

0 = p ? -  ~ ~t~'""*v-, r,, "* (15) 
m,  n 

3.2. Numerical  Solution of the Fixed-Point Equations 

A straightforward numerical t reatment  of the problem defined by 
Eq. (15) becomes possible if we truncate the sum over  1 in Eq. (12), intro- 
ducing a highest index l . . . .  

/ma~ ~2/ 

P(~)= ~ pl21[(21)!],/2 (16) 
/=0 
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Then, of course, also the sums over m and n run only from 0 to l . . . .  and 
the fixed-point problem consists in the study of / m a x +  1 quadratic 
equations, 

f / =  0, 0 ~< l ~< /max 
(17) 

f ,=  P , -  E ST'"P,,P,, 
m . n  <~ /max 

We shall denote solutions of these equations by p*. We used the routine 
C05NBF from the NAGLIB library 19~ for a numerical solution of the fixed- 
point equations in the range 2 < d < 4 .  Notice that the dimension 
dependence enters through the /~' dependence of the structure coefficients 
S';'". The program requires an initial guess of the solution. If the program 
is successful, it returns a solution, together with the values of the f~ for this 
particular solution. In Table I we show as an example the p* for /max = 10 
and d =  3, together with the f f l  that can be considered as a measure of the 
error of the solution. 

We used truncation parameters lmax in the range 10-50. For the two- 
well fixed points, lmax = 20 was completely sufficient. To get an impression 
of the finite-lm~x effects, the reader is invited to study Table II, where we 
give the first 11 coefficients of the two-well fixed point in three dimensions 
for /max = 10, 20, and 30. 

We define an effective potential V((~) through 

(FI ) t 81 V(~b) := - I n  \F(--~--O)/ 

In Fig. 1 we show our results for the two-well potential for d =  2.1 through 
d =  3.8 in steps of 0.1. In all cases we used lmax = 20. The deepest potential 

Table I. The p~ and fl for/max----10 in d - - 3  Dimensions 

t p* f, 

0 0.752806717034 x 10 §176 0.423398205312 x 10 -16 

1 0.481272697982 x 10 +~ -0.113124959171 • 10  - 1 7  

2 0.313506765870 x 10 +~ 0.347242613663 • 10 -17 

3 0.186261032043 x 10 +~ -0 .179714118083 x 10 -17 

4 0.100696164171 x 10 +~ 0.395226286632 x 10 -j7 

5 0.499270725225 x 10-1 0.117550777471 x 10 -16 

6 0.228929876623 x 10 - I  0.570517883570 • 10  - 1 7  

7 0.977563729148 x 10 -2 0.622745240266 • 10  - 1 7  

8 0.390718140134 x 10-2 0.471372511658 X 10 - 1 7  

9 0.146546809430 • 10 -2 0.307351198867 • 10 -17 

10 0.515497714660 x 10 -3 0.122533903732 • 10 -17 
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Table II. The First 11 Coeff icients p~ of the 2-Well  in d = 3  Dimensions 
for Three Dif ferent  Values of Ima x 

1 /max = 10 '/max = 20 lmax = 30 

0 0 .752806717034  x 10 - ~  0 .752859732932  x 10 - ~  0 .752859732933  x 10 - ~  

1 0 .481272697982  x 10 - ~  0 .481191004612  x 10 - ~  0 .481191004610  • 10 - ~  

2 0 .313506765870  x 10 - ~  0 .313445974082  x 10 - ~  0 .313445974081 x 10 - ~  

3 0 .186261032043  x 10 -o  0 .186254920100  x 10 -o  0 .186254920100  x 10 - ~  

4 0 .100696164171 • 10 - ~  0 .100729195010  • 10 - ~  0 .100729195011 x 1 0 - o  

5 0 .499270725225  x 10 t 0 .499755196476  • 10-1  0 .499755196485  • 10 -1 

6 0 .228929876623  x 10 - I  0 .229416956212  x 10-1  0 .229416956222  x 10 - j  

7 0 .977563729148  x 10 -2  0 .981866078064  • 10 -2  0 .981866078150  x 10 -2  

8 0 .390718140134  x 10 -2  0 .394316100256  x 10 -2  0 .394316100333  x 10 -2  

9 0 .146546809430  x 10 -2  0 .149410716099  x 10 -2  0 .149410716173  x 10 -2  

10 0 .515497714660  • 10 -9  0 .536648340900  x 10 -3  0 .536648341727  • 10 -3  

corresponds to d=2.1 .  With increasing dimension, the 2-well gets flatter 
and flatter until it vanishes in four dimensions. 

From naive power counting and the studies of Section 5, one expects 
that n-well fixed points occur when the dimension goes below the threshold 
d,,= 2n/(n-1). Note that exactly at these thresholds the operators #-'" 
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Fig.  1. O u r  resu l t s  for  the  2-well  potential for d =  2.1 t h r o u g h  d =  3.8 in steps of  0.1. The 
deepest potential corresponds to  d =  2.1. With increasing dimension, the 2-well gets flatter and 
flatter until it vanishes in four dimensions. In  all cases we used /ma~ = 20. 
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The fixed-point 4-well potentials for d =  2.1 and d =  2.3. The potential with the deeper 
wells corresponds to d =  2.1. In both cases we used l,.,,a~ = 30. 
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become relevant with respect to the Gaussian fixed point. Thus 2-wells are 
expected to exist for d < 4, 3-wells for d < 3, 4-wells for d < 8/3, and so on. 

By starting our program with a suitable initial guess, we were able to 
find the three-well potentials. Figure 2 shows the results for d = 2.1 through 
d =  2.7 in steps of 0.1. The deepest potential corresponds to d =  2.1, the flat- 
test one to d =  2.7. In all cases we used again /max = 20. 

The search for the four-well potential was a bit more difficult. It 
turned out that one needed more than 20 couplings for a reasonable 
parametrization. Figure 3 shows the four-well potential in d =  2.1 and in 
d =  2.3 dimensions. We used lmax = 30 in both cases. 

In all cases, we made a further check on our results as follows: We 
represented the Boltzmannian F by its values on a grid of typically 300 sites 
on the interval 0 ~<~b ~< A, where A was typically 10 or 20. The RG steps 
were then done by numerically performing the integral (1), using the 
NAGLIB routine D01GAF. This routine determines an approximation of 
an integral if the integrand is given on a finite number of points. All fixed 
points determined by the algebraic method were converted to functions on 
the ~b-grid and then checked for stability under iterated application of the 
integration method. 

4. THE L INEARIZED R E N O R M A L I Z A T I O N  G R O U P  

In this section we shall report on a numerical study of the eigenvalues 
of the hierarchical RG, linearized around the nontrivial fixed points. Note 
that the eigenvalues related to the full transformation (1) are the same as 
those related to the transformation (5) for Z. The reason is that fixed 
points F* and Z* differ only by the factor FHT that is a fixed point itself. 
The transformation for Z around a fixed point parametrized by coor- 
dinates p* is 

(p* +6,)~---*(p* +6~)= ~. ~"l"t,,* ~, , e , ,+6 , , ) (p*  +6 , )  (19) 
m ,  n 

We expand to first order in 6, 

6,~--~ 6; = ~ R,,,6, (20) 
n 

and identify the linearized RG transformation with the matrix R, 

Rh,=2~ ' .  ~'""'*~/ ~,,, (21) 
m 

The matrix R is not symmetric. It can, however, be shown that its eigen- 
values are real (cf. Lemma 5.4 below). We used the NAGLIB procedures 

8 2 2 / 7 7 / 5 - 6 - 3  
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F01AKF and F02APF to compute all eigenvalues 2; of R, with i =  
0 ..... lmax. All eigenvalues are positive in accordance with Corollary 2.3 of 
ref. 5. We define 

2i = L ~ (22) 

where L denotes the block size, in our case 2~/a. 
Table III  shows, as an example, the first six eigenvalues a; of the 

linearized RG around the 2-well, the 3-well, and the 4-well in d=2.1  
dimensions, respectively. Positive eigenvalues a; are called relevant, 
negative eigenvalues are called irrelevant, and a zero eigenvalue is called 
marginal. In accordance with the expectation, the n-wells have n -  1 (non- 
trivial) relevant eigenvalues. 

One always observes an eigenvalue a o = d  that corresponds to the 
trivial volume operator. It corresponds to the fact that the fixed point Z* 
itself is an eigenvector with eigenvalue 20 = 2. The next eigenvalue a~ is 
related to the critical exponent v, via c'~ 

1 
v = - -  (23) 

a l  

In Table IV we show our results for the exponent v for d =  2.1 through 
d =  3.8 in the case of a 2-well. It is interesting to compare the d =  3 result 
with the exponent v for the three-dimensional Ising model. The best known 
estimates for the latter are in the range 0.624-0.630. ~1~ For d---,2, the 
deviation of the exponent v from the value in the full model increases. We 
know from the exact solution of the two-dimensional Ising model that v = 1 
for d =  2. In the hierarchical model we observe v > 2 already at d = 2.1. 

It is interesting to look at the eigenvectors of the linearized RG 
transformation. As an example we consider the eigenvectors of the transfor- 
mation (1), linearized around the trivial fixed point F*(~b)= 1 and around 

Table III. The Six Leading Eigenvalues a a at  d- -2 .1  fo r  the  2-Wel l ,  
t he  3-Wel l ,  and the  4-Wel l ,  Respec t i ve ly  

i 2-well 3-well 4-well 

0 2.1000000 2.1000000 2.1000000 
1 0.4787297 1.9715290 1.9851950 
2 -1.1724335 0.4611953 1.0966180 
3 -3.3445644 --0.7546772 0.4105210 
4 -5.8303542 --2.2270214 --5.6565547 
5 -8.4946711 --3.9790124 --1.7706071 
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Table IV. Results for the Critical Exponent v in the 
Hierarchical Model for the 2-Well  

989 

d v d v 

2.1 2.08886 3.0 0.64957 
2.2 1.36234 3.1 0.62570 
2.3 1.09916 3.2 0.60484 
2.4 ~95704 3.3 0:58640 
2.5 0.86534 3.4 0.56995 
2.6 0.79985 3.5 0.55516 
2.7 0.74993 3.6 0.54182 
2.8 0.71011 3.7 0.52973 
2.9 0.67729 3.8 0.51877 

the nontrivial two-well fixed point in d =  3 dimensions. The eigenvectors 
Ol~ for the linearization around F* = 1 can be given exactly: 

O,~ = const. H2. (2~) (24) 

with 
Y 

~7= 1 n 2  (25) /o 

i 

O 

O I 

0.5 I 1.5 2 2.5 3 3.5 4 4,5 
PHI 

Comparison of the two leading eigenvectors of the RG transformation linearized Fig. 4. 
around the trivial fixed point and the 2-well fixed point in d = 3. The single-well-shaped func- 
tions correspond to the relevant eigenvalue. The double-well-shaped functions correspond to 
the first irrelevant eigenvalue. The full lines belong to the nontrivial fixed point. 
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The Hk denote the Hermite polynomials. We compare these functions for 
i =  1, 2 with the corresponding eigenvectors of the RG linearized around 
the two-well fixed point in d =  3; see Fig. 4. The figure shows that the eigen- 
vectors in d =  3 are of similar shape as the corresponding functions for the 
trivial fixed point. Note, however, that the "full" eigenvectors contain a 
factor FHv and thus have a completely different large-~b behavior than 
the Hermite polynomials. 

5. e-EXPANSION 

In this section, we want to compare the numerical results obtained in 
the previous section with expansions in e = d* - d, where d* is one of the 
threshold dimensions d, = 2n/(n- 1). This section is organized as follows: 
In Section 5.1 a parametrization of the hierarchical Boltzmannian is intro- 
duced that is suitable for the e-expansion. The recursion relations for the 
expansion coefficients al kl are derived in Section 5.2. In Section 5.3 we 
derive the recursion relations for the computation of the e-expansion for 
the eigenvalues and eigenvectors of the linearized e-expansion. In 
Section 5.4 we give some comparisons of the e-expansion results with the 
numerical results. 

In ref. 6 it is shown that the e-expansion is locally Borel summable. 

5.1. Expansion of F in Wick Monomials  

We consider the expansion of the Boltzmannian F in terms of normal 
ordered powers of ~b-'. This expansion shall be the basis for the e-expansion 
to be studied below. One expands in terms of normal ordered monomials 

F(~b) = y '  a~ :~b,j:; (26) 
I~>0 

/ ,  

The reason to divide the coefficients at by ~ is that ai becomes 
~-independent for the fixed point. Under an RG step the coordinates a~ 
transform according to 

al~--~ a~= flzl ~ cg'~'"a,,,a,, (27) 
n ! ,  n 

The sum in Eq. (27) is restricted to [m - nl ~< / ~< m + n, and the "structure 
coefficients" are given by 

(2m)! (2n)! 
~eT'"- (28) (re+n--l)! ( l + n - - m ) !  ( l + m - n ) !  
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Normal ordering with respect to a covariance ~7 is defined through 

:exp(a~b):~ = exp ( - ~  ~a -  " + a~b) (29) 

The normal ordered powers of ~b can be expressed in terms of Hermite 
polynomials, 

:r = H,  (30) 

That we use a direct expansion of F as a basis for the e-expansion seems 
to be in contradiction to our statement above that it should be much better 
to use the split F =  FHTZ, and then expand Z. The e-expansion is, however, 
an expansion about F =  I (and not about Z = 1). Furthermore, as we shall 
see from the recursion relations to be derived below, the effective 
Boltzmannians to a given order in e live in a finite-dimensional space of 
coupling constants. It is thus irrelevant which coordinates are chosen in 
this space as long as they span this space. 

5.2. e-Expansion for the at 

In this section we derive the recursive relations for the coefficients al k) 
defined through 

al= ~ alk)e k (31) 
k = 0  

We determine by e-expansion the coefficients of the infrared fixed point at 
d =d*-e  dimensions starting from the trivial fixed point in d* := 
2l*/(l*-l) dimensions, where l * e  {2, 3,...}. The following lemma shows 
how to compute the a) k~ recursively. 

L e m m a  5.1. Suppose that the coefficients (fl-z/)t,,,i are defined by 

fl-21= 2///�9 ~ (fl-21)l,,le,,, (32) 
m = 0 

For 1"~ {2, 3,...} and al~ we have 

2(/~ -2/.)1,1 
al lJ= ~6ct., ~t . -  (33) 
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and, for all 1#1", N>~I, 

alN)= l ~[--2t / ' ' (~--2 ' ) 'N--~"alkl+ ~ CgT"a(,,N--k)a(,k'] (34 ) 
2 t/t" -- 2 k = 1 ,,,.,, 

For all N/> 2, 

{[ . , .  = 2( / /_2 , . ) ( , )  - 2  (]/ cr y'  . . , .  j 
k=2 

N--I } 
+ ~ ~ ~,...,~u+l-k, Ik~ (35) ~ l ' " . ,  a,  +2  2 ffT'J'a~ m~ 

k = 2  m , n  m : m ~ l *  

ProoL The Nth-order term of the fixed-point equation 

is given by 

[3-2tat= ~, ~'['a,,,a, (36)  
1.11,11 

N N 

2t/1" Z (/~-2')(u-*)a~ *'= ~ Z cgT'"a~U-k'a~.*) (37) 
k = 0  k = 0  m , n  

Since al~  61,o and (/~-o)c,~ = 0 for n > 0, we obtain 

[ u - ,  ] u - ,  
2t/t" al u)+ Z (~-2t)(u-k)a~ k) =2al  N'+ ~ Z ~,r , ,  (38) 

k = l  k = l  m , n  

We have used ~7'O=6m.t. Equation (38) implies for l # l *  Eq.(34). 
Consider Eq. (38) for the case N =  1: 

21/l'a~l)= 2a~l~ (39) 

This implies a~l)= ~&~,~.. To determine the constant ~, we have to consider 
Eq. (38) for the case N=2 ,  1=/*: 

This implies 

2(~-2")1' I a~P -- ~,~'"'t'~',.,. ~2, (40) 

Let us consider Eq. (38) for the case N~> 3. l= /* :  

N - - I  N - - I  

2 ~ (/3-2t') (u-k~ 'm- t '=~  ~'. ~/'~"""(u-k)"., a.lk) (42) 
k = l  k = l  r a , n  

:= (41) 
<e~:" 



RG Fixed Points and e-Expansions 993 

This implies 

[ N--2--2l~ 'N-kiak*,] 2 (fl-21")(N--lio~'~-(fl--21~ ~1. - Z ( Is  
k=2 

N--2 
= 2 ~ (~ml*n(N- 1 ~1" "m )0~ + ~ 2 ~ l'~mnrt(N--k)~m an(k) 

rn k=2 m,n 

Thus, 

( N - I ) _  
a t . 

(43) 

, { {  _2 } 
m, , --2 (fl-2, ') l l l~+ ~ (fl-2t*)tu-kla~ki 

2((/~ 2")"1--%- ~J *=2 

N-- 2 (~mnq{N-k),~(k)~ +2 ~ c-6~nt'a(mN--l)tx+ ~ ,  ~ ~ / ' ' m  =n j- (44) 
rn:rn~l* k=2 m,n 

Using ff~:t'~t = 2 ( f l - z t * )  (l) and replacing N by N +  1, we obtain Eq. (35), I 

With the following lemma we provide explicit expressions for the 
e-expansion of fl-z/. 

I .emma 5.2. Suppose that the coefficients (fl-I)~m) of the 
e-expansion for the term fl-I are defined by 

fl - I = 21/2/�9 

Then, we have (f l-i)lo)= 1 and 

( f l - / ) l - , ,=%'  1 ( 
k=o ( m - k ) !  

for m~> 1. 

Proof. We have 

• (/7-/) I ' l  e" (45) 
m=O 

lln 2"~"-k (m--1) d,_,,, 
-d-J) k 

(46) 

,)} fl_t=2t/2t.2U/a.l~l_a.ldl=2,2t, ex p l 2 1- 1 - - e /d*  (47) 

Expansion of the exponential function on the rhs of Eq. (47) gives 

[ ' y] /~- '=2 u2t~ 1+ ~ ~-~!\--d-g- j 1 1 2 e / a  (48) 
n = l  

Furthermore, 

1 " e " (n 1 ~(  ~___'~ k (49) 
k=O k J \ d * J  
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Insertion of Eq. (49) into Eq. (48) yields 

[ +,~. I ( /In2)" ~ [n+k--l~(~_~_~"+k l 
=m k Jw*J J 

Introducing a new variable m = n + k ~ { 1, 2,... }, we obtain 

,,-1 1 / l n 2 y  " -k  1"~ 
f l - t = 2 ' / 2 t ' { l +  ~ [k~=o(rn-k),(-----~-j (m k / 

m = 1 

This implies the assertion. | 

(50) 

(51) 

5.3. E-Expansion for the Linearized RG 

We shall now consider the eigenvalue problem for the linearized RG 
equation. The eigenvalues and eigenvectors are computed by using the 
z-expansion. 

The linearized RG transformation is given by the matrix U(a), with 
matrix elements 

U,,,(a) := 2fl 2' ~ c~7'"a., (52) 
m 

L e m m a  5.3. Consider the eigenvalue equation for the linearized 
RG equation 

U(a) b = 2b (53) 

Suppose that the vector a in d = d * - e  dimensions, d*=2l*/(l*-l) ,  
l * e  {2, 3,...}, is given by the e-expansion 

am = ~ a,,~klek (54) 
k :  k >~O 

and the z-expansion of U is 

U= z u'k'e k (55) 
k 

Suppose that the z-expansions of b and 2 are given by 

b= ~ bl'~e '', 2= ~ 2~"~e " (56) 
rn: m >~ O n : n > ~ 0  
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Suppose that b(~ and 2(~ ~-a'/'', for the {0, 1, 2,...}. Then, we 
have 

and, for 1:/: fit, 

N - I  
~ ( N ) =  ~ ~ U thm(N-n)b., ( ')  (57)  

n=0 rtl 

1 N--I 
b} N) E T[(N-n)] ]~(n) - 2 ( 2 - u ' ' - 2 - ' ~ ' ' )  Y" m ( 2 ( N - - n ) ~ l ' m - - V l m  ' V m  

n=0 

Furthermore, 

b'd'=0 

The proof of this lemma will be given later. 

Lemma 5.4. 
product, defined by 

Proof. We have 

where 

(58) 

(59) 

U(a) is symmetric with respect to the canonical scalar 

(a, b) := ~ a.b. (60) 
tl 

~ 2n 

T./ := U./ (62) 
(2n)! 

Since T,. = Tl~, we have 

(u, U(a) v) = (U(a) u, v) | (63) 

Lemma 5.4 shows that the eigenvalues of U(a) are real. The next 
lemma shows how to compute the e-expansion for the eigenvectors and 
eigenvalues. 

kornrna.5 .5 .  Suppose that the linearized RG group equation is 
given by the series expansion 

U(a) = ~. U("l(a) 5" (64) 
n:n~>0 

(u, U(a) v ) = ~  u.T.,vl (61) 
t!, I 
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and that the zeroth-order term U ~~ is symmetric. Let b be an eigenvector 
with eigenvalue ). of U(a), i.e., 

U(a) b = 2b (65) 

Let b ~~ be a normalized eigenvector with eigenvalue 2 t~ of UC~ i.e., 

Ut~ b t~ = 2~~ I~ (b ~~ b ~~ = 1 (66) 

where the scalar product (- ,-)  is defined by Eq. (60). Suppose that the 
eigenvalue 2 ~~ is not degenerate. Then, there exists an e-expansion for the 
eigenvector b with eigenvalue 2 

b=Vf_b~'le " , 2 = Z  2~")e " (67) 
m n 

such that 
(b I~ b ~m) = 0  (68) 

for all N > 0 .  The coefficients b tm and 2 ~m are recursively determined by 

N - - I  

2~m= ~ (b (~ UtU-"~b ~")) (69) 
n = O  

and 

biN) = ( U ( ~  - -  ~(~  - 1  (UIN-"I--2~N-"))b~"~ (70) 
n 0 

where u • is the component of u perpendicular to b ~~ | 

Proof. The eigenvalue equation implies, for all N, 

~ (U~'lb~"~-21'~b~"~)=O (71) 
m , n : m + n = N  

Thus, 
N - - I  

(Ul~176 b~ul= Z (U~N-"~--AIN-"~) b~"~ (72) 
n z O  

Since (Ul~176 b~~ we may add to b Ira, N > 0 ,  on the lhs of 
Eq. (72) a multiple of vector b ~~ such that Eq. (88) holds. Scalar multi- 
plication of Eq. (72) with b ~~ gives 

N - - I  

(b~~176176 b~m)= ~ (bC~ ~'~) (73) 
n = 0  
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Since U (~ is symmetric, the lhs of Eq. (73) is zero. Therefore Eq. (69) is 
valid. Since the rhs of Eq. (72) is perpendicular to b ~~ Eq. (70) can be 
computed by Eq. (72). II 

The next lemma presents the e-expansion of the linearized RG trans- 
formation U(a). 

L e m m a  5.6. Let the e-expansion of fl21 be 

fl~l= 2-1/t. ~ (fl21)~,,) e", (f12,)~o) = 1 (74) 
m=O 

for 1" �9  {2, 3,...}. Then the e-expansion of U 

U=  ~ U(~)e k (75) 
k 

is explicitly given by 

k 
u ( k )  __ 91 -I/1" nl --  ~ 2 2 (~7  n( f l21)(k-  r ) a ~ '  ( 7 6 )  

r=O m 

The proof of the foregoing lemma follows immediately from the 
definitions. 

For the recursive computation of the coefficients for the eigenvalues 
and eigenvectors we need the start values of the recursion relations which 
are eigenvalues and eigenvectors of U (~ 

(o)= 6,,.o. The normalized eigenvectors k e m m a  5.7. Suppose that ar~ 
b (~ with eigenvalues 2 (0) of U (~ are 

b (~ = 6,,.,~, 2(0)= 21 -,~//* (77) 

for all rh �9 {0, 1, 2,... }. 

Proof. We have, using am(~ --6,,.0, c~t~ = 6t.,, 

Thus 

U(O)_ 21 -I/1. 6 (78) nl --  n.I 

(uco)b~O~), = 2 ~ -,~lt. 6 _ = 2 ~ -,~/t. co) ,.,, b, II (79) 

We finish this subsection with the proof of Lemma 5.3. 

Proof  o f  L e m m a  5.3. By Lemma5.5, Eq. (69), follows Eq. (57). 
Since 

U(~ = 2 '- / / t '6  2(0)=21 - a'/j" (80) n/ n,l~ 
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we have 

Therefore 

(U I~  21~ 2(2 -//1* _ 2-,~,//") 6,.1 (8t) 

1 
( U ~~ _ 2<~ = 2(2 -//,- _ 2 -  a,//.) 6,, t (82) 

Thus, Eq, (70) of Lemma 5.5 implies Eq. (58). I 

5.4. Comparison of E-Expansion with Numerical Results 

We evaluated the recursion relations presented in the preceding sub- 
section using the computer algebra program Maple V Release 2. This 
allowed us to go to relatively high order. We always used programs that 
computed everything exactly (in the form of analytical expressions) and 
programs that solved the recursion relations numerically. Note, however, 
that Maple allows for arbitrary high precision in the numerical computa- 
tions. It was no problem to compute the coefficients al "~ for d* = 4 exactly 
to sixth order in e. However, the expressions become quite nasty then. As 
an example we present the coefficients al "~ up to n = 3 in Appendix B. The 
general structure for the expansion around d * =  4 is that at a given order 

0.08 

0.06 

0.04 

0.02 

-0.02 
0.5 I 1.5 2 2.5 3 3.5 

PHI 

Fig. 5. Comparison of the "true" 2-well potential at d =  3.8 with the first- and fourth-order 
e-expansion. The full line gives the result obtained numerically, and the dashed lines give the 
first- and fourth-order approximations, respectively. 
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Table V. Numer ica l  Results of  a 1 and a 2 for  n f rom 10 to  16 

999 

n a~ nl a~ ~ 

10 4.59314 x 101 -2.89444x 102 
11 -3.41664 x 102 2.26283 x 103 
12 2.70284 x 103 -1.87364x 104 
13 -2.26138 x 104 1.63588 x 105 
14 1.99286 x 105 -1.50104x 106 
15 - 1.84404x 106 1.44371 x 107 
16 1.78725 X 10 7 --1.45243 x 108 

n the only nonvanishing coefficients are those with l < ~ 2 n .  The 
cor responding  relat ion at d * =  3 is l~< 3n. The e-expansion is expected to 
have zero convergence radius. However,  the series are believed to be Borel- 
summable.  F o r  small e even the naively summed low-order  series can be a 
quite good  approx imat ion .  In Fig. 5 we show the compar i son  of the "true" 
two-well potent ia l  at d =  3.8 with the first- and four th-order  e-expansion. 
The full line gives the result obta ined  numerically,  and  the dashed lines give 
the first- and four th-order  approximat ions ,  respectively. 

With  the numerical  version of the p rogram it was no problem to go 
to orders  like 16. In Table V we show the in t imidat ing growth of the 
expansion coefficients when the order  becomes large. 

Wi th  the help of the recursion relat ions of the preceding subsections 
we also determined the e-expansion for the exponent  v. We again used an 
exact version of the p rogram that  was pract icable  up to order  6, and  a 
numerical  version that  could be used to higher order. 

In Table  VI we show our  results for the expansion coefficients of v, 
compared  with those of the full model.  1~2~ The first two orders  are exactly 

Table VI. Compar ison  o f  the  c-Expansion Coef f i c ien ts  
o f  v in the  Hierarchical  M o d e l  v; w i t h  

the  Ones in the  Full M o d e l  vl. f 

i v i Vi, f 

0 0.5000 0.5000 
1 0.0833 0.0833 
2 0.0556 0.0445 
3 -0.0324 -0.0190 
4 0.1468 0.0888 
5 -0.5743 -0.2015 
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Table VII. Results of Resummed Series for v up to Order c* for k ~ 5  ~ 

d k = 1 k = 2 k = 3 k = 4 k = 5 "true" BP 

3.0 0 .6161  0 .6523  0 .6060  0 .8255  0 .3639  0.64957 - -  
3.1 0 .6007  0 .6293  0 .5961  0 .7228  0 .4235  0 .62570 0.62599 
3.2 0 .5864  0 .6084  0 .5855  0 .6580  0 .4771 0 .60484 0.60136 
3.3 0 .5730  0 .5895  0 .5744  0 .6144  0 .5160  0 .58640 0,58791 
3.4 0 .5605  0 .5723  0 .5630  0 .5837  0 .5369  0 .56995 0.56973 
3.5 0 .5487  0 .5568  0 .5515  0 .5612  0 .5423  0 .55516 0.55525 
3.6 0 . 5 3 7 7  0 .5428  0 .5402  0 .5440  0 .5379  0.54181 0.54183 
3.7 0 . 5 2 7 4  0 .5302  0 .5291  0 .5303  0 .5289  0 .52973 0.52973 
3.8 ~5177 0 .5190  0 .5186  0 .5189  ~5187 0 .51877 0.51877 

"true" is the numerical result, BP is the result of a BoreI-Pad6 summation explained in the 
text. 

the same (the coefficient v~ is 1/12 in the hierarchical  and in the full model) .  
This might  be due to the fact that  the e-expansion of the exponent  r / s ta r t s  
at o rder  e 2. 

In Table VII we give the results of resummed series for v up to order  
e k, for k ~< 5, and d =  3.0-3.8. F o r  the larger  values of e, the signal of  the 
divergence of the series is obvious. F o r  compar i son  we also quote  our  
numerical  result ("true") and the result of a Bore l -Pad6  summat ion  of the 
s ixth-order  e-expansion (BP). The la t ter  was obta ined  as follows: The v i 
were divided by i!, and the d iagonal  Pad6 approx ima t ion  of the resulting 
Taylor  series was determined.  F r o m  the resulting ra t ional  function Q(e) the 
est imate for v was then ob ta ined  by numerical ly  comput ing  

f? v(e) = dt e x p ( -  t) Q(te) (83) 

There is a quite good  agreement  with the "true" results. ( F o r  d =  3, the 
d iagonal  Pad6 of the Borel t ransform had a nonintegrable  singulari ty on 
the positive real axis.) 

6. C O N C L U S I O N S  

In this paper ,  we have computed  and studied fixed points  and 
exponents  of hierarchical  models. An extension to N-componen t  models  
and general  values of L could be easily done. Of course, many  new ideas 
are necessary to do the same thing in full models. The crucial quest ion here 
is the p roper  choice of paramet r iza t ion  of the Bol tzmannian.  An interest ing 
problem which certainly deserves s tudy is whether  the e-expansion for the 
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RG flow (in the Wilson sense) in full models could be performed to an 
order that is competitive with what has been done in the conventional 
framework. 

A P P E N D I X  A. FIELD T H E O R Y  A N D  H I E R A R C H I C A L  M O D E L S  

This appendix discusses the hierarchical model as an approximation of 
a field-theoretic model and motivates the hierarchical RG equation. 

The generating functional for Green's functions of a scalar field theory 
on a d-dimensional continuum R d is given by the following (formal) 
infinite-dimensional integral: 

Z [ J ]  :=-A/" I I1 d~b(z)exp[-�89 (A1) 
z E R  d 

where ~b is a scalar field and J is an external source o n  R d. Here V(~)= 
S..~R, ~(~b(z)) is the local interaction term and �89 - ' 4 4 ) i s  the free part 
of the action. ,4 is the Laplacian, and Y is a normalization factor chosen 
such that 

d/~v(q~) :='A/" r-I d~(z)exp[-�89 
z ~ R  d 

(A2) 

is a normalized Gaussian measure, v is called the propagator. The canonical 
scalar product is defined by 

(~b, ~,):= f.~a ~ b ( z ) .  0(z) (A3) 

for fields ~b, ~k on R a. 
For RG calculations it is more convenient to use generating func- 

tionals with external fields ~O, 

Z(r := J" d~(~b) exp[ - V(~b + r (A4) 

The two generating functionals are related by 

Z(~O) = Z[J] e x p [ -  �89 v J)]  I.,= ~-,~ (A5) 

For the definition of the hierarchical model, we introduce the notion of a 
hierarchical lattice (or multigrid). For L E { 2, 3,... } and j E Z divide R a into 
hypercubes of side length aj := L-Ja, where a is a unit length. Denote the 
set of all these hypercubes by Aj. We can consider Aj as a lattice with lat- 
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tice spacing aj by identifying the centers of the hypercubes with the lattice 
sites. The location of the hypercubes can be chosen in the following way. 
For a hypercube y E Aj let 33 be the open hypercube of y. For y ~ Aj and 
x ~ A k we suppose that 33 n x = ~ or 33 ___ x. In the latter case we write y _e x. 
The hierarchical approximation is given by the replacement 

v ~ ~ v j ( A 6 )  
j e z  

where, for z, z' ~ R d, 

a 2 - d - ~  vJ(z ,z ' ) :=  j ~, ..... . (A7) 

Here, x and x' are the uniquely determined hypercubes of Aj such that 
z ~ x, z ' e  x'. We call v j the fluctuation propagator. The above replacement 
represents the fact that in general v can be decomposed into a sum of fluc- 
tuation propagators which are exponentially decaying with decay length aj. 
This exponential decay is simulated by the Kronecker delta on the rhs of 
Eq. (A7). There are other ways to define the hierarchical approximation. 
But all hierarchical approximations share the property that the fluctuation 
propagators v j have compact support. Insertion of replacement (A6) into 
Eq. (A4) yields, using the convolution formula of Gaussian measures, 

(A8) 

We define an ultraviolet cutoff by setting the propagator v J = 0  if j >  n and 
an infrared cutoff by setting v k = 0 if k ~< j: 

Z)."'(~k)=f h d # v J ( ~ ) e x p [ - V (  ~ r  (A9) 
i = j +  1 - - i = j +  I 

The effective generating functions Z)  "~ and 7~,,I - - j - l  are related by 

= f , n , j  (A10) 

Since we started with a local interaction V, the effective generating func- 
tions obey the following factorization property: 

Z ) " ( ~ ) =  1-~ Z) ' ) (Y[~)  (Al l )  
y: y E .4 i 
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Since the kernel of v j is constant  on hypercubes of A j, we can assume that 
the fields ~k are constant  arguments  of 7 '"~ i.e., do not depend on z ~ R  a. ~ j  
Therefore, Eq. (A10) is equivalent to 

I': I, E x 
(A12) 

for x e Aj_ 1. For  translat ion-invariant  models ZJ."~(yl~b) does not depend 
on y E Aj. Let us define 

z ~ . " ) ( ~ )  �9 ( . I  , . = Z j  (ylaj-d/2q~) (A13) 

F rom Eq. (A12) and definition Eq. (A13) follows, using ~b --* ,,l-d/2,/, ~j - -  1 'F, 

Z~'n--) 1 ( @ ) =  I f  d]-l),(~) ZJn)(~-{ - LI--d/21/])] Ld (A14) 

For  F' :=(Z)n...)l)L-d and F:=(ZJ"I )  t-~, we obtain the hierarchical R G  
transformation (1). 

A P P E N D I X  B. S O M E  RESULTS OF e - E X P A N S I O N  FOR THE a~ "~ 

R : = l n 2  
T : =  x /~  (B1) 

a(o ~ = 1 

R 2 

at~ = 864 

a~o3 ~ = 12R2(3R-  2 ) -  RZ(19R - 18) T 
- - 3 1 1 0 4 T + 4 1 4 7 2  

R 2 

a]21 - 2 1 6 T - 4 3 2  

- 2 R 2 ( 7 R  - 8) + R2(7R - 12) T 

a]3~ = 1 7 2 8 0 T -  24192 

R a(1) 
" 144 

a~22 ~ = 1 2 R ( 3 R -  2 ) -  R ( 1 9 R -  18) T 
- 10368T+ 13824 

822/77/5-6-4 
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a,31~ = R(154R 2 + 1161R - 459) - 12R(8R z + 69R --  27) T 

- 7 4 6 4 9 6 T +  1057536 

a 2 

a~2~ - 2 5 9 2 T -  2592 

a~  ) = - 8 R 2 ( R -  I ) + R 2 ( 5 R - 6 )  T 

7 2 5 7 6 T -  103680 

R 2 

a ~  - 41472 

- 1 2 R Z ( 3 R  - 2) + R 2 ( 3 5 R -  18) T 

a(431 = - 1 4 9 2 9 9 2 T +  1990656 

R 3 

a~31 = 3 7 3 2 4 8 T -  373248 

R 3 

aC63~ = 17915904 
(B2) 
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